Quality – Innovation – Future
A DMT Company Presentation
International Conference on “Trends and Prospects of Coal Production and Usage in Ukraine and Globally”

“Potential of Coal Mining in Ukraine”

Prepared by

Ulrich Ruppel, Managing Director, DMT Consulting GmbH, Germany
Artem Chayka, Project Manager, DMT Consulting GmbH, Germany

Kiev, 14th June, 2017
DMT

1. Introduction DMT
2. DMT Experience Ukraine

“Potential of Coal Mining in Ukraine”

1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
DMT

1. Introduction DMT
2. DMT Experience Ukraine

"Potential of Coal Mining in Ukraine"

1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
Introduction DMT

- Founded in 1990 in Germany
- Technical roots dating back to 1864 respectively 1737
- Today a division of TÜV NORD GROUP

- Global group of 14 consulting and engineering firms
- Headquarters in Essen, Germany
- > € 100 Mio. annual turnover
- > 750 employees
- DMT-Expert Bodies
 - 16 government approved expert bodies for safety
 - 3 accredited testing laboratories
 - 75 accredited experts
Mining Consulting & Engineering
Comprehensive one-stop services for the natural resources industry

Our services:
- International Mining Consulting
- Mining Engineering
One Shop Service for the Mining Industry

- Greenfield development
- Deposit-modelling
- Mine planning
- Process design
- Mine site rehabilitation
- Assistance during operation

Achtung, Folientest, nicht für den Produktiveinsatz geeignet
DMT Experience Ukraine

DMT has long-term experience in Ukraine, e.g.

“Potential of Coal Mining in Ukraine”

1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
1 Current coal production / Domestic Demand

<table>
<thead>
<tr>
<th>Coal production in Ukraine 2015*</th>
<th>Coal import to Ukraine 2015*</th>
<th>Total demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.76 Mt</td>
<td>14.6 Mt</td>
<td>54.36 Mt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stataliche</td>
<td>37,5</td>
<td>24,9</td>
<td>24,1</td>
<td>17,7</td>
<td>6,7</td>
<td>-82,2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-33,6%)</td>
<td>(-3,3%)</td>
<td>(-6,6%)</td>
<td>(-62,2%)</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>43,6</td>
<td>61,1</td>
<td>59,6</td>
<td>47,6</td>
<td>33</td>
<td>-24,4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+40,1%)</td>
<td>(-2,5%)</td>
<td>(-0,7%)</td>
<td>(-30,2%)</td>
<td></td>
</tr>
<tr>
<td>davon DTEK</td>
<td>38,4</td>
<td>39,6</td>
<td>40</td>
<td>35</td>
<td>26,7</td>
<td>-30,5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+3,1%)</td>
<td>(+1,6%)</td>
<td>(-2,5%)</td>
<td>(-23,7%)</td>
<td></td>
</tr>
<tr>
<td>Gesamtukraine</td>
<td>81,1</td>
<td>86</td>
<td>83,7</td>
<td>65</td>
<td>39,7</td>
<td>-51,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+6,1%)</td>
<td>(-2,7%)</td>
<td>(-2,3%)</td>
<td>(-38,9%)</td>
<td></td>
</tr>
</tbody>
</table>

- Over 30% of coal consumption has been imported
- Particularly a large deficit of anthracitic and metallurgical coal

Source: Ministry of Finance of Ukraine
DMT

1. Introduction DMT
2. DMT Experience Ukraine

“Potential of Coal Mining in Ukraine”
1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
2 Production costs

Average Coal Production Costs Ukraine

Privatised Mines: **55 - 65 US$/t** (estimated)

State Owned Mines: more than **150 US$/t** estimated

Average Price of Coal Import to Ukraine 2015

85.7 US$/t

• Produce more Ukrainian coal or buy imported coal?

• For Ukraine it is worth to invest in domestic coal industry and reducing coal import!
DMT

1. Introduction DMT
2. DMT Experience Ukraine

“Potential of Coal Mining in Ukraine”

1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
3 Longwall performance Ukraine

Longwall Performance Privatized Company

Longwall Performance State Owned Company
DMT

1. Introduction DMT
2. DMT Experience Ukraine

“Potential of Coal Mining in Ukraine”

1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
4.1 Potential of production increase

“Longwall performance of German benchmark mines”

<table>
<thead>
<tr>
<th>Mine</th>
<th>Seam Thickness [m]</th>
<th>Panel Width [m]</th>
<th>Gas Emission</th>
<th>Extraction Equipment</th>
<th>Average ROM Production [t/d]</th>
<th>Average Face Advance [m/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>West (Germany)</td>
<td>1.40</td>
<td>203</td>
<td>low</td>
<td>GH 4.7 2x200 kW</td>
<td>5,370</td>
<td>9.4</td>
</tr>
<tr>
<td>Auguste Viktoria (Germany)</td>
<td>1.5</td>
<td>420</td>
<td>medium</td>
<td>GH42 2x800 kW</td>
<td>11,900</td>
<td>12.4</td>
</tr>
<tr>
<td>Auguste Viktoria (Germany)</td>
<td>1.17</td>
<td>312</td>
<td>medium</td>
<td>GH5.7 2x400 kW</td>
<td>8,400</td>
<td>8.6</td>
</tr>
<tr>
<td>Niederberg (Germany)</td>
<td>0.8</td>
<td>300</td>
<td>low</td>
<td>RHH</td>
<td>2,700</td>
<td>8.7</td>
</tr>
<tr>
<td>Ibbenbüren (Germany)</td>
<td>0.97</td>
<td>298</td>
<td>high</td>
<td>GH42 2x400 kW</td>
<td>9,930</td>
<td>11.0</td>
</tr>
<tr>
<td>Prosper (Germany)</td>
<td>1.55</td>
<td>350</td>
<td>medium</td>
<td>GH42 2x800 kW</td>
<td>8,960</td>
<td>6.3</td>
</tr>
<tr>
<td>Prosper (Germany)</td>
<td>1.51</td>
<td>350</td>
<td>medium</td>
<td>GH42 2x800 kW</td>
<td>12,380</td>
<td>8.9</td>
</tr>
<tr>
<td>West (Germany)</td>
<td>1.2</td>
<td>308</td>
<td>high</td>
<td>GH5.7 2x400 kW</td>
<td>8,750</td>
<td>11.4</td>
</tr>
<tr>
<td>West (Germany)</td>
<td>0.9</td>
<td>360</td>
<td>high</td>
<td>GH42N 2x630 kW</td>
<td>5,620</td>
<td>7.1</td>
</tr>
</tbody>
</table>
4.2 Potential of production increase “Longwall performance of international benchmark mines”

<table>
<thead>
<tr>
<th>Mine</th>
<th>Seam Thickness [m]</th>
<th>Panel Width [m]</th>
<th>Gas Emission</th>
<th>Extraction Equipment</th>
<th>Average ROM Production [t/d]</th>
<th>Average Face Advance [m/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mimosa (Mexico)</td>
<td>1.5</td>
<td>200</td>
<td>high</td>
<td>GH9-38 ve 5.7 2x400 kW</td>
<td>1,900</td>
<td>2.5</td>
</tr>
<tr>
<td>Bogdanka (Poland)</td>
<td>1.5</td>
<td>250</td>
<td>medium</td>
<td>GH1600 2x800 kW</td>
<td>8,200</td>
<td>10.4</td>
</tr>
<tr>
<td>Pervomayskaya (Russia)</td>
<td>1.1</td>
<td>300</td>
<td>high</td>
<td>GH800 2x400 kW</td>
<td>6,300</td>
<td>9.1</td>
</tr>
<tr>
<td>Pinnacle Mine (USA)</td>
<td>1.4</td>
<td>300</td>
<td>low</td>
<td>GH1600-3 2x600 kW</td>
<td>12,000</td>
<td>23.8</td>
</tr>
<tr>
<td>US Steel 50 (USA)</td>
<td>1.2</td>
<td>270</td>
<td>low</td>
<td>GH2.7 2x400 kW</td>
<td>8,200</td>
<td>18</td>
</tr>
<tr>
<td>Xiaoqing (China)</td>
<td>1.2</td>
<td>225</td>
<td>medium</td>
<td>GH9-38 2x400 kW</td>
<td>4,000</td>
<td>7.0</td>
</tr>
<tr>
<td>Paskov (Czech Republic)</td>
<td>0.9</td>
<td>246</td>
<td>high</td>
<td>PL9-38</td>
<td>1,800</td>
<td>6.6</td>
</tr>
</tbody>
</table>
4.3 Potential for production increase

- Experience of the benchmark mines working under similar geological conditions shows that face production rates of 200-300% can be achieved applying state of the art mining equipment and techniques.
- Various geological and mining conditions of Ukrainian mines allow choosing operations with the minimum natural production limitations (gas, hardness of coal, rock stability, etc.).
- After detailed technical investigations and cost estimation these mines can be targeted for investment focusing in state of the art equipment and mining techniques.
- Modern plow systems in combination with proper mining infrastructure (roadway cross sections and stability, haulage, ventilation etc.) can ensure mine production of some 5,000 - 7,000 t/d operating one longwall instead of proposed 2-3 longwalls working in parallel. At the same time cost reduction for infrastructure, roadway maintenance, gas drainage, transport and personal, etc. can be expected due to significant concentration of work and economy of scales effects.
- Investment in one high productive production equipment (e.g. plow) will provide for better availability and reliability, resulting in higher return on investment (ROI) than investment in 2-3 longwall sets with lower performance, reliability and production life.
4.4 Potential for production increase
DMT

1. Introduction DMT
2. DMT Experience Ukraine

“Potential of Coal Mining in Ukraine”

1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
5 Performance constrains

The main constrains are:

- Poor stability of roadways and insufficient cross sections
- High wear of mine infrastructure and production equipment
- High gas emission
DMT

1. Introduction DMT
2. DMT Experience Ukraine

“Potential of Coal Mining in Ukraine”

1. Current coal production / Domestic demand
2. Production costs
3. Longwall performance
4. Potential for production increase
5. Performance constrains
6. Approach
6.1 Approach

1. Detailed technical analysis of mine potential (coal quality, reserves, CPP, personal, etc.) and factors limiting longwall face production (gas emission, strata stability, faulting, infrastructure capacity, etc.).

2. Ranging of the mines and identification of the most favorable assets for high productive equipment and state of the art mining techniques. Focus on deficit anthracite and met coal.

3. Development of detailed technical concept for the pilot testing mine/s. Equipment selection, production calculation, roadway dimensioning, infrastructure refurbishment in order to achieve maximum operating time of the extraction equipment.

5. Selection and implementation of the pilot testing project.
CONCLUSIONS:
Implementation of the pilot project will provide the additional base for optimum development of the high potential mines as well as overall long-term development of Ukrainian coal assets.
Thank you very much for your attention!

Ulrich Ruppel (Managing Director)

DMT Consulting GmbH
Am Technologiepark 1
45307 Essen
Germany

Phone: +49 201 1721507
Mobile: +49 171 762 2362
E-mail: Ulrich.ruppel@dmt-group.com